

Gerd Stirmlinger

Diplom Ingenieur Pfungstädter Straße 48 64297 Darmstadt

06151 95 05 74 0 Mobil 0151 7007 9505 E-Mail: info@An-i-nA.de www.An-i-nA.de

Tel.

Web:

Datum: 01.08.2023

Projekt

23-2053/Prüfbericht01

64668 Rimbach

Rathausstraße 1

Gemeinde Rimbach

AninA GmbH & Co. KG, Pfungstädter Straße 48, 64297 Darmstadt

Gemeinde Rimbach; Neubau einer Kindertagesstätte auf dem Parkplatz der Trommhalle, Hauptstraße 35 in 64668 Rimbach-Zotzenbach -Chemisch-analytische Untersuchung von Bodenmischproben

1. Veranlassung

Im Ortsteil Zotzenbach der Gemeinde Rimbach ist der Neubau einer nicht unterkellerten Kindertagesstätte geplant (s. Anlage 1). Die gepl. Baufläche befindet sich auf dem Gelände östlich der Trommhalle, welche derzeit als Parkplatz genutzt wird. Die genaue Lage auf dem Grundstück, sowie die Art und Weise der Bebauung (Abmessungen, Anzahl der Etagen, etc.) sind derzeit noch nicht bekannt.

Im Rahmen orientierender baugrundtechnischer Untersuchungen (Vorerkundung) wurden im Bereich des möglichen Baugeländes Bodenproben (aus dem Auffüllboden und dem natürlichen Boden) entnommen.

Die Bodenproben wurden zu 2 Mischproben homogenisiert zusammengefasst und sodann nach den Kriterien der Ersatzbaustoffverordnung chemisch-analytisch untersucht. Zur Lage der Beprobungsstellen siehe Lageplan der Anlage 1.

Die Entnahme der Proben erfolgte am 12.07.2023 bei trockener Witterung – weitere beprobungrelevante Daten sind dem Probenahmeprotokoll in Anlage 3 zu entnehmen.

Die chemisch-analytischen Untersuchungen wurden von der Eurofins Umwelt West GmbH ausgeführt. Deren Ergebnisse sind der Anlage 2 zu entnehmen.

Literatur

- [U 1]: Gesetz zur Förderung der Kreislaufwirtschaft und Sicherung der umweltverträglichen Bewirtschaftung von Abfällen (Kreislaufwirtschaftsgesetz KrWG), 24.02.2012
- [U 2]: Mitteilungen der Länderarbeitsgemeinschaft (LAGA PN 98) "Richtlinie für das Vorgehen bei physikalischen, chemischen und biologischen Untersuchungen im Zusammenhang mit der Verwertung / Beseitigung von Abfällen, Stand Dez. 2001
- [U 3]: Verordnung zur Einführung einer Ersatzbaustoffverordnung, zur Neufassung der Bundes-Bodenschutz- und Altlastenverordnung und zur Änderung der Deponieverordnung und der Gewerbeabfallverordnung; Stand: 09.07.2021
- [U 4]: Verordnung über Anforderungen an den Einbau von mineralischen Ersatzbaustoffen in technische Bauwerke (Ersatzbaustoffverordnung ErsatzbaustoffV), Stand: 09.07.2021

Anlagen

- Anlage 1: Lageplan mit Darstellung der Probenahmepunkte
- Anlage 2: Chemisch-analytische Untersuchung der Bodenmischproben 2053-BMP 1 u. 2 nach den Kriterien Ersatzbaustoffverordnung (Eurofins-Bericht Nr. AR-777-2023-036494-01 vom 31.07.2023)
- Anlage 3: Probenahmeprotokoll, Probenbegleitprotokolle, Erklärung der Untersuchungsstelle

Bild Nr. 1: Blick auf das Parkplatzgelände an der Trommhalle in Rimbach-Zotzenbach; Übersichtsaufnahme

2. Probenahme

Wie bereits in Kapitel 1 beschrieben, wurden auf dem Parkplatzgelände aus Kleinrammbohrungen wie folgt Bodenproben gewonnen.

Zur Lage der Beprobungsstellen siehe Lageplan in Anlage 1.

Tab. 1: Bodenproben

Entnahme- stelle	Entnahmetiefe [m unter GOF]	Proben- bezeichnung	Mischproben- bezeichnung	Untersuchungs- parameter
KRB 1	~ 0,10 - 1,00	BP 1	2053-BMP 1 ("Auffüllboden":	
KRB 2	~ 0,10 - 1,30	BP 2	Sand, Kies, Schluff, mit we-	
KRB 3	~ 0,15 - 1,40	BP 3	nig Beton-, As- phalt-, Schlacke-	
KRB 4	~ 0,08 - 1,50	BP 4	, Ziegel-, Back- stein-, Kohle-,	
KRB 5	~ 0,08 – 0,65	BP 5	Bauschuttres- ten)	
KRB 6	~ 0,15 - 2,10	BP 6	,	gemäß Ersatzbau- stoffV, Anl. 1,
KRB 1	~ 1,00 – 3,00	BP 7		Tab. 3 [U 4]
KRB 2	~ 1,30 - 3,00	BP 8	2053-BMP 2	
KRB 3	~ 1,40 - 3,20	BP 9	("natürl. Bo- den": Sand,	
KRB 4	~ 1,50 – 3,00	BP 10	Kies, teils Schluff, fein-	
KRB 5	~ 0,65 – 3,00	BP 11	sandig)	
KRB 6	~ 2,10 - 3,00	BP 12		

3. Chemisch-analytische Untersuchungen / Beurteilung

In der folgenden Tabelle sind die grenzwertüberschreitenden Parameter mit Zuordnung in die jeweilige Materialklasse gemäß ErsatzbaustoffV [U 4] aufgeführt (vgl. auch Eurofins-Bericht in Anlage 2).

Für die Bewertung der Analysenergebnisse wurden die Bodenmischproben als "Sand" deklariert.

Beide Mischproben wurden als "Bodenmaterial mit mineralischen Fremdbestandteilen (≤ 10 Vol.%)" angenommen.

Tab. 2: Analysenergebnisse (Boden)

Proben- bezeichnung	Untersuchungs- parameter	erhöhte Parameter	Messwert	Material- klassen
2053-BMP 1 ("Auffüllboden")	EBV, Anl. 1, Tab. 3 [U 4] (Feststoff)	Arsen Chrom Nickel Zink	21,9 mg/kg 51 mg/kg 19 mg/kg 87 mg/kg	BM-F0* BM-F0* BM-F0* BM-F0*
	EBV, Anl. 1, Tab. 3 [U 4] (Eluat)			BM-0
2053-BMP 2	EBV, Anl. 1, Tab. 3 [U 4] (Feststoff)	Arsen Chrom Nickel	13,7 mg/kg 33 mg/kg 21 mg/kg	BM-F0* BM-F0* BM-F0*
("natürl. Boden")	EBV, Anl. 1, Tab. 3 [U 4] (Eluat)			BM-0

Anmerkung Nr. 1 gemäß EBV

BM: Bodenmaterial mit mineralischen Fremdbestandteilen (≤ 10 Vol.%) BM-F: Bodenmaterial mit mineralischen Fremdbestandteilen (10 – 50 Vol.%)

Beurteilung:

Die orientierenden, chemisch-analytischen Untersuchungen haben ergeben, dass sowohl im Straßenoberbau (Bodenmischprobe BMP 1), als auch im natürlichen Erdreich grenzwertüberschreitende Schadstoffbelastungen mit Schwermetallen im Feststoff festgestellt wurden.

Gemäß Ersatzbaustoffverordnung [U 4] wird der Straßenoberbau (BMP 1) und das natürliche Erdreich (BMP 2) der Materialklasse BM-F0* zugeordnet.

01.08.2023

Seite 5

Die beprobten Böden können gemäß den Tabellen der Anlagen 2 und 3 der Ersatzbaustoffverordnung vor Ort und/oder bei anderen Maßnahmen wiederverwendet werden, ihre bodenmechanische Eignung vorausgesetzt.

4. Schlussbemerkung

Hinsichtlich der Entsorgung / Deponierung von Erdbaustoffen, sowie zur Verifizierung der vorliegenden Ergebnisse sind Beprobungen gemäß LAGA PN98 (z.B. Haufwerksbeprobungen) oder nach DIN 19698-6 (in-situ-Beprobungen) notwendig.

Die Entsorgungswege (Wiederverwertung / Deponierung) sowie die Annahmekriterien der Deponiebetreiber und die Entsorgungskosten sollten generell frühzeitig geklärt werden, um spätere Stillstandzeiten und Probleme zu vermeiden.

Für eine Wiederverwertung von Aushubböden sind ab 01.08.2023 die Vorgaben der Ersatzbaustoffverordnung zu beachten. So ist u.a. der Inverkehrbringer des Bodens festzulegen und die Verwertungswege mittels Lieferscheins zu dokumentieren.

Sämtliche Aussagen, Empfehlungen und Bewertungen basieren auf dem in diesem Prüfbericht beschriebenen Untersuchungsumfang und den hieraus gewonnenen Erkenntnissen. Aufgrund der punktuellen Untersuchungsmethodik sind Abweichungen zu den genannten Analysenergebnissen nicht auszuschließen.

Vorliegender, urheberrechtlich geschützter Prüfbericht ist nur in seiner Gesamtheit verbindlich und besitzt nur für das projektierte Vorhaben Gültigkeit. Der Bericht dient ausschließlich zur Verwendung für den Auftraggeber – die Weiterleitung des Berichtes bedarf der Zustimmung des Unterzeichners. Gegenüber Dritten besteht Haftungsausschluss.

Darmstadt, den 01.08.2023

(Dipl.-Ing. Stirmlinger)

Anlage 2

Chemisch-analytische Untersuchungsergebnisse

Eurofins Umwelt West GmbH (Wesseling) - Vorgebirgsstrasse 20 - 50389 Wesseling

AninA GmbH & Co. KG Pfungstädter Straße 48 64297 Darmstadt Deutschland

Prüfbericht

Prüfberichtsnummer AR-777-2023-036494-01

Ihre Auftragsreferenz KITA Trommhalle, Rimbach-Zotzenbach

Bestellbeschreibung -

Auftragsnummer 777-2023-036494

Anzahl Proben 2

Probenart Boden

Probenahmezeitraum 12.07.2023
Probeneingang 13.07.2023

Prüfzeitraum 14.07.2023 - 31.07.2023

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Probenahme nicht durch unser Labor oder in unserem Auftrag erfolgte, wird hierfür keine Gewähr übernommen. Dieser Prüfbericht darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Das beauftragte Prüflaboratorium ist durch die DAkkS nach DIN EN ISO/IEC 17025:2018 akkreditiert. Die Akkreditierung gilt nur für den in der Urkundenanlage (D-PL-14078-01-00) aufgeführten Umfang.

Jaqueline Beppler Prüfleitung +49 1736133574

Eurofins Umwelt West GmbH Prof.-Wagner-Straße 11 61381 Friedrichsdorf

Digital signiert, 31.07.2023

Jaqueline Beppler

			Probe	nreferenz	2053-BMP 1	2053-BMP 2
			Probena	ahmedatum	12.07.2023	12.07.2023
Parametername	Akkr.	Methode	BG	Einheit	777-2023- 00102755	777-2023- 00102756
Probenvorbereitung Feststo	ffe			'		
Fraktion < 2 mm	L8	DIN 19747: 2009-07	0,1	%	55,2	72,0
Fraktion > 2 mm	L8	DIN 19747: 2009-07	0,1	%	44,8	28,0
Physikalisch-chemische Ker	ngrößen	aus der Originals	ubstanz			1
Trockenmasse	L8	DIN EN 14346: 2007-03	0,1	Ma%	93,9	90,6
Elemente aus Königswasser	aufschlus	s nach DIN ISO 1	1466: 19	97-06 (Frakti	on <2mm)	•
Arsen (As)	L8	DIN EN 16171:2017-01	0,8	mg/kg TS	21,9	13,7
Blei (Pb)	L8	DIN EN 16171:2017-01	2,0	mg/kg TS	26	12
Cadmium (Cd)	L8	DIN EN 16171:2017-01	0,2	mg/kg TS	< 0,2	< 0,2
Chrom (Cr)	L8	DIN EN 16171:2017-01	1,0	mg/kg TS	51	33
Kupfer (Cu)	L8	DIN EN 16171:2017-01	1,0	mg/kg TS	10	11
Nickel (Ni)	L8	DIN EN 16171:2017-01	1,0	mg/kg TS	19	21
Quecksilber (Hg)	L8	DIN EN 16171:2017-01	0,07	mg/kg TS	< 0,07	< 0,07
Thallium (TI)	L8	DIN EN 16171:2017-01	0,2	mg/kg TS	0,2	< 0,2
Zink (Zn)	L8	DIN EN 16171:2017-01	1,0	mg/kg TS	87	50
Organische Summenparame	ter aus de	⊣ er Originalsubsta				1
TOC	L8	DIN EN 15936: 2012-11	0,1	Ma% TS	0,6	0,3
EOX	L8	DIN 38414-17 (S17):	1,0	mg/kg TS	< 1,0	< 1.0
Kohlenwasserstoffe C10-C22	L8	2017-01 DIN EN 14039: 2005-01	40,0		< 40	< 40
	L8	DIN EN 14039: 2005-01		mg/kg TS		-
Kohlenwasserstoffe C10-C40			40,0	mg/kg TS	< 40	< 40
PAK aus der Originalsubstar						T
Naphthalin	L8	DIN ISO 18287: 2006- 05	0,05	mg/kg TS	nachweisbar < 0,05	nicht nachweisbar
Acenaphthylen	L8	DIN ISO 18287: 2006- 05	0,05	mg/kg TS	nicht nachweisbar	nicht nachweisbar
Acenaphthen	L8	DIN ISO 18287: 2006- 05	0,05	mg/kg TS	nicht nachweisbar	nicht nachweisbar
Fluoren	L8	DIN ISO 18287: 2006- 05	0,05	mg/kg TS	nicht nachweisbar	nachweisbar < 0,05
Phenanthren	L8	DIN ISO 18287: 2006- 05	0,05	mg/kg TS	nachweisbar < 0,05	nachweisbar < 0,05
Anthracen	L8	DIN ISO 18287: 2006- 05	0,05	mg/kg TS	nicht nachweisbar	nachweisbar < 0,05
Fluoranthen	L8	DIN ISO 18287: 2006- 05	0,05	mg/kg TS	nachweisbar < 0,05	nachweisbar < 0,05
Pyren	L8	DIN ISO 18287: 2006- 05	0,05	mg/kg TS	nachweisbar < 0,05	nachweisbar < 0,05
Benzo[a]anthracen	L8	DIN ISO 18287: 2006- 05	0,05	mg/kg TS	nicht nachweisbar	nicht nachweisbar
Chrysen	L8	DIN ISO 18287: 2006- 05	0,05	mg/kg TS	nicht nachweisbar	nicht nachweisbar
Benzo[b]fluoranthen	L8	DIN ISO 18287: 2006- 05	0,05	mg/kg TS	nicht nachweisbar	nicht nachweisbar
Benzo[k]fluoranthen	L8	DIN ISO 18287: 2006- 05	0,05	mg/kg TS	nicht nachweisbar	nicht nachweisbar
Benzo[a]pyren	L8	DIN ISO 18287: 2006- 05	0,05	mg/kg TS	nicht nachweisbar	nicht nachweisbar
Indeno[1,2,3-cd]pyren	L8	DIN ISO 18287: 2006- 05	0,05	mg/kg TS	nicht nachweisbar	nicht nachweisbar

			Prober	nreferenz	2053-BMP 1	2053-BMP 2
			Probena	hmedatum	12.07.2023	12.07.2023
Parametername	Akkr.	Methode	BG	Einheit	777-2023- 00102755	777-2023- 00102756
PAK aus der Originalsubsta	nz (Fraktio	on < 2 mm)		1	-	
Dibenzo[a,h]anthracen	L8	DIN ISO 18287: 2006- 05	0,05	mg/kg TS	nicht nachweisbar	nicht nachweisbar
Benzo[ghi]perylen	L8	DIN ISO 18287: 2006- 05	0,05	mg/kg TS	nicht nachweisbar	nicht nachweisbar
Summe 15 PAK ohne Naphthalin exkl. BG		berechnet		mg/kg TS	0,075	(n.b.) ²⁾
Summe 16 EPA-PAK exkl. BG		berechnet		mg/kg TS	0,100	(n.b.) ²⁾
PCB aus der Originalsubsta	nz (Fraktio	on < 2 mm)				
PCB 28	L8	DIN EN 17322: 2021-03	0,01	mg/kg TS	nicht nachweisbar	nicht nachweisbar
PCB 52	L8	DIN EN 17322: 2021-03	0,01	mg/kg TS	nicht nachweisbar	nicht nachweisbar
PCB 101	L8	DIN EN 17322: 2021-03	0,01	mg/kg TS	nicht nachweisbar	nicht nachweisbar
PCB 153	L8	DIN EN 17322: 2021-03	0,01	mg/kg TS	nicht nachweisbar	nicht nachweisbar
PCB 138	L8	DIN EN 17322: 2021-03	0,01	mg/kg TS	nicht nachweisbar	nicht nachweisbar
PCB 180	L8	DIN EN 17322: 2021-03	0,01	mg/kg TS	nicht nachweisbar	nicht nachweisbar
Summe 6 DIN-PCB exkl. BG		berechnet		mg/kg TS	(n.b.) ²⁾	(n.b.) ²⁾
PCB 118	L8	DIN EN 17322: 2021-03	0,01	mg/kg TS	nicht nachweisbar	nicht nachweisbar
Summe PCB (7)		berechnet		mg/kg TS	(n.b.) ²⁾	(n.b.) ²⁾
Physikalisch-chem. Kenngrö	ößen aus (dem 2:1-Schüttele	luat nach	n DIN 19529:	2015-12	
pH-Wert	L8	DIN EN ISO 10523 (C5): 2012-04			8,2	7,4
Temperatur pH-Wert	L8	DIN 38404-4 (C4): 1976 -12		°C	22,3	21,3
Leitfähigkeit bei 25°C	L8	DIN EN 27888 (C8): 1993-11	5,0	μS/cm	138	67
Kenngr. d. Eluatherst. f. org.	., nicht-flü	cht. Par. nach DIN	N 19529: 2	2015-12		
Trübung im Eluat nach DIN EN ISO 7027: 2000-04	L8		10,0	FNU	< 10	25
Anionen aus dem 2:1-Schütt	teleluat na	ich DIN 19529: 20	15-12			
Sulfat (SO4)	L8	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	13	5,2
Elemente aus dem 2:1-Schü	tteleluat n	ach DIN 19529: 20	015-12			
Arsen (As)	L8	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,002	< 0,001
Blei (Pb)	L8	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001	< 0,001
Cadmium (Cd)	L8	DIN EN ISO 17294-2 (E29): 2017-01	0,0003	mg/l	< 0,0003	< 0,0003
Chrom (Cr)	L8	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001	< 0,001
Kupfer (Cu)	L8	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001	< 0,001
Nickel (Ni)	L8	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001	< 0,001
Quecksilber (Hg)	L8	DIN EN ISO 12846 (E12): 2012-08	0,0001	mg/l	< 0,0001	< 0,0001
Thallium (TI)	L8	DIN EN ISO 17294-2 (E29): 2017-01	0,0002	mg/l	< 0,0002	< 0,0002
Zink (Zn)	L8	DIN EN ISO 17294-2 (E29): 2017-01	0,01	mg/l	< 0,01	< 0,01

			Prober	referenz	2053-BMP 1	2053-BMP 2
			Probena	hmedatum	12.07.2023	12.07.2023
Parametername	Akkr.	Methode	BG	Einheit	777-2023- 00102755	777-2023- 00102756
PAK aus dem 2:1-Schüttelelu	at nach l	DIN 19529: 2015-1	2			
Naphthalin	L8	DIN 38407-39 (F39): 2011-09	0,05	μg/l	nachweisbar < 0,05	nicht nachweisbar
Acenaphthylen	L8	DIN 38407-39 (F39): 2011-09	0,03	μg/l	nicht nachweisbar	nicht nachweisbar
Acenaphthen	L8	DIN 38407-39 (F39): 2011-09	0,02	μg/l	0,02	nicht nachweisbar
Fluoren	L8	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,01	nachweisbar < 0,01
Phenanthren	L8	DIN 38407-39 (F39): 2011-09	0,02	μg/l	0,05	0,02
Fluoranthen	L8	DIN 38407-39 (F39): 2011-09	0,02	μg/l	0,03	0,02
Anthracen	L8	DIN 38407-39 (F39): 2011-09	0,008	μg/l	0,01	nachweisbar < 1 0,01
Pyren	L8	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,02	0,01
Benzo[a]anthracen	L8	DIN 38407-39 (F39): 2011-09	0,01	μg/l	nicht nachweisbar	nicht nachweisbar
Chrysen	L8	DIN 38407-39 (F39): 2011-09	0,01	μg/l	nicht nachweisbar	nicht nachweisbar
Benzo[b]fluoranthen	L8	DIN 38407-39 (F39): 2011-09	0,01	μg/l	nicht nachweisbar	nicht nachweisbar
Benzo[k]fluoranthen	L8	DIN 38407-39 (F39): 2011-09	0,01	μg/l	nachweisbar < 0,01	nicht nachweisbar
Benzo[a]pyren	L8	DIN 38407-39 (F39): 2011-09	0,008	μg/l	nachweisbar < 1) 0,01	nicht ¹ nachweisbar
Indeno[1,2,3-cd]pyren	L8	DIN 38407-39 (F39): 2011-09	0,01	μg/l	nachweisbar < 0,01	nicht nachweisbar
Dibenzo[a,h]anthracen	L8	DIN 38407-39 (F39): 2011-09	0,008	μg/l	nicht ¹⁾ nachweisbar	nicht ¹ nachweisbar
Benzo[ghi]perylen	L8	DIN 38407-39 (F39): 2011-09	0,01	μg/l	nachweisbar < 0,01	nicht nachweisbar
Summe 16 PAK nach EBV: 2021		berechnet		μg/l	0,199	0,067
Summe 15 PAK ohne Naphthalin nach EBV: 2021		berechnet		μg/l	0,174	0,067
1-Methylnaphthalin	L8	DIN 38407-39 (F39): 2011-09	0,01	μg/l	nicht nachweisbar	nachweisbar < 0,01
2-Methylnaphthalin	L8	DIN 38407-39 (F39): 2011-09	0,01	μg/l	nicht nachweisbar	nachweisbar < 0,01
Summe Methylnaphthaline nach EBV: 2021		berechnet		μg/l	(n.b.) ²⁾	0,010
Summe Methylnaphthaline + Naphthalin nach EBV: 2021		berechnet		μg/l	0,025	0,010
PCB aus dem 2:1-Schüttelelu	at nach l	DIN 19527: 2012-0	8			
PCB 28	L8	DIN 38407-37: 2013-11	0,001	μg/l	nicht nachweisbar	nicht nachweisbar
PCB 52	L8	DIN 38407-37: 2013-11	0,001	μg/l	nicht nachweisbar	nicht nachweisbar
PCB 101	L8	DIN 38407-37: 2013-11	0,001	μg/l	nicht nachweisbar	nicht nachweisbar
PCB 153	L8	DIN 38407-37: 2013-11	0,001	μg/l	nicht nachweisbar	nicht nachweisbar
PCB 138	L8	DIN 38407-37: 2013-11	0,001	μg/l	nicht nachweisbar	nicht nachweisbar
	1.0	DIN 00 407 07 0040 44				

L8

DIN 38407-37: 2013-11

0,001

μg/l

nicht

nachweisbar

nicht

nachweisbar

PCB 180

			Proben	referenz	2053-BMP 1	2053-BMP 2
			Probenal	nmedatum	12.07.2023	12.07.2023
Parametername	Akkr.	Methode	BG	Einheit	777-2023- 00102755	777-2023- 00102756

PCB aus dem 2:1-Schütteleluat nach DIN 19527: 2012-08

Summe 6 PCB nach EBV: 2021 exkl. BG		berechnet		μg/l	(n.b.) ²⁾	(n.b.) ²⁾
PCB 118	L8	DIN 38407-37: 2013-11	0,001	μg/l	nicht nachweisbar	nicht nachweisbar
Summe 7 PCB nach EBV: 2021		berechnet		μg/l	(n.b.) ²⁾	(n.b.) ²⁾

Weitere Erläuterungen

Nr.	Probennummer	Probenart	Probenreferenz	Probenbeschreibung	Eingangsdatum
1	777-2023-00102755	Boden	2053-BMP 1		13.07.2023
2	777-2023-00102756	Boden	2053-BMP 2		13.07.2023

Akkreditierung

AkkrCode	Erläuterung
L8	DIN EN ISO/IEC 17025:2018 DAkkS D-PL-14078-01-00 (Scope on https://www.dakks.de/as/ast/d/D-PL-14078-01-00.pdf)

Laborkürzelerklärung

BG - Bestimmungsgrenze

Akkr. - Akkreditierungskürzel des Prüflabors

Alle nicht besonders gekennzeichneten Analysenparameterwurden in der Eurofins Umwelt West GmbH (Wesseling) durchgeführt. Die mit L8 gekennzeichneten Parameter sind nach DIN EN ISO/IEC 17025:2018 (DAkkS, D-PL-14078-01-00) akkreditiert.

Angaben zur durchgeführte(n) Probenahme(n), sofern von Eurofins durchgeführt, siehe Probenahmeprotokoll(e).

Kommentare und Bewertungen

zu Ergebnissen:

- 1) Die Bestimmungsgrenze musste laborseitig erhöht werden.
- 2) nicht berechenbar

Anlage 3

Probenahmeprotokoll

Probenahmeprotokoll (in Anlehnung an LAGA PN 98)

A. Allgemeine Angaben

Anschriften

1 Veranlasser / Auftragge	eber:	Betreiber / Betrieb:
Gemeinda Rin	abach (-)	
2 Landkreis / Ort / Straße	ı:	Objekt / Lage:
Rathunsstraße	1 Nembar	n Kindertugesstätte
64668 Rimbach	Parkpla	Az Trommhalle
3 Grund der Probenahme:		O.
4 Probenahmetag / Uhrzeit: 12 0		
5 Probenehmer / Dienststelle / Firma:		
6 Anwesende Personen: 14r. We		
7 Herkunft des Abfalls (Anschrift):	otstraße 35, 646	68 Rimbach - Fotzenbach
8 Vermutete Schadstoffe / Gefährdungen:		
9 Untersuchungsstelle: Eurafich S	; Unwelf West	GabH
B. Vor-Ort-Gegebenheiten		
10 Abfallart / Allgemeine Beschreibung:	1) Auffollboden (5	and, Schlaff, Kies)
2) haturl. Boden (Sand		
11 Gesamtvolumen / Form der Lage	rung: UNBLYANA T	
12 Lagerungsdauer:		
13 Einflüsse auf das Abfallmaterial (z.B. W	/itterung, Niederschläge):	icker- Grundwasser
14 Probenahmegerät und -material:	Cein ramon bohrer	(KRB)

Probenahmeprotokoli (in Anlehnung an LAGA PN 98)

15 Probenahmeverfahren: Bohryut gewinnung mittels KRB
16 Anzahl der Einzelproben:
17 Anzahl der Einzelproben je Mischprobe:
18 Probenvorbereitungsschritte: Keise
19 Probentransport und -lagerung: PE - Eimev Kühlung (evtl. Kühltemperatur): Whilbox
20 Vor-Ort-Untersuchung:
21 Beobachtungen bei der Probenahme/Bemerkungen: Fiegel-, Asphalt-, Buchslein-, Schlacke-, Beton-, Dansthatt teste im Auffallboden
22 Topographische Karte als Anhang? ja 🔲 nein 🗡 Hochwert: Rechtswert:
23 Lageskizze (Lage der Haufwerke, etc. und Probenahmepunkte, Straßen, Gebäude u.s.w.):
2053 - BMP 1 aus KRB 1-6 (Auffallbother) Entrahune tiefe bis max. 2.1 u 4.604
2053-BMP 1 aus KRB 1-6 (Auffallboden)
2053-BMP 1 aus KRB 1-6 (Auffällbothen) Entrahmetiefe bis max. 2,1 n G. COU
2053-BMP 1 aus KRB 1-6 (Anffällbocken) Entrahmetiefe bis max. 2,1 m 4.604 2053-BMP 2 aus KRB 1-6 (nated. Boden)
2053-BMP 1 aus KRB 1-6 (Anffüllbocken) Entrahmetiefe bis max. 2,1 m G. COU 2053-BMP 2 aus KRB 1-6 (nation. Boden)
2053 - BMP 1 aus KRB 1-6 (Auffällboden) Entrahmetiefe bis max. 2,1 m a. GOK 2053 - BMP 2 aus KRB 1-6 (natürl. Boden) Entrahmetiefe bis a. 3,0 m a. GOK